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Abstract

Kalman filter technniques are widely used in the areas of attitude and orbit

determination, prediction and calibration. These techniques work well if the

system dynamics are well-defined. Problems arise, however, when the system

parameters are unknown ahead of time or changing over time.

This paper discusses an adaptive Kalman filter design that utilizes recursive

maximum likelihood parameter identification. At the center of this design is the

Kalman filter itself, which has the responsibility for attitude determination. At

the same time, however, the identification algorithm is continually identifying

the system parameters. The approach is applicable to nonlinear as well as linear

systems. This adaptive Kalman filter design has much potential for real-time

implementation, especially considering the fast clock speeds, cache memory

and internal RAM available today.

The recursive maximum likelihood (RML) identification algorithm is dis-

cussed in detail, with special attention directed towards its unique matrix for-

mulation. Next, the procedure for using the algorithm is described along with

comments on how this algorithm interacts with the Kalman filter.

Finally, a spacecraft attitude determination/calibration example is pro-

vided. In the development of the dynamics for this example, the angular veloc-

ity of one of the axis is assumed to be constant. In the simulation, however, this

velocity varies slowly. The RML identifier is used to continually identify this

changing velocity. This AKF-RML method may be used to identify multiple

parameters such as sensor biases or external torques.

*Hughes Aircraft Company, Aurora, Colorado
tMechanica! and Aerospace Department, North Carolina State University
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1 Introduction

A problem that has received recent attention is the estimation of systems whose

dynamics are unknown or changing. In these situations, it is often neccessary to

utilize an estimation algorithm that is able to adjust the system dynamics model au-

tomatically. Self-adjusting estimation schemes are known as adaptive filters. There

are many examples of systems with unknown or changing dynamics, several of which

have just recently become more of a concern.

Spacecraft attitude and orbit estimation are two such areas. Many current

operational spacecraft do most of the attitude estimation, prediction and calibration

on the ground using large mainframe computers. Recent literature, [19] and [23] for

example, has suggested on-board attitude prediction and calibration using adaptive

filtering techniques. Adaptive filtering methods have already been used for some

time in spacecraft orbit estimation [27].

Adaptive filter techniques have also been applied in the steering of ships [28]

and has been suggested for use in calibrating ocean navigational gyros [21]. Indus-

trial processes research has led to the development of adaptive filter algorithms for

monitoring chemical processes. Chen, Wadhwani and Roberts [3], for example, offer

an adaptive filter technique for monitoring changes in raw material composition.

Adaptive control methods often utilize adaptive filters. An extensive amount of

literature has surfaced within the last fifteen years in the field of adaptive control of

robotic manipulators alone. An example of a robotic manipulator adaptive control

scheme is discussed in detail in an article by Lee, Kelly and Karim [15].

A relative newcomer to the field of adaptive filtering is large space structures

(LSS). Larger spacecraft offer several advantages over smaller spacecraft including

longer on-orbit lifespans (thus, fewer launch vehicles are required), on-orbit refueling

(for lower orbit spacecraft) and more or larger payloads. As these spacecraft increase

in size and complexity, some problems arise. A larger, more complex spacecraft will

have lower bending frequencies, more fuel slosh, larger disturbances [11] and the

possibility of greater interaction between multiple payloads [10]. Adaptive filtering

techniques have been proposed for use in identifying parameters such as vibrational

frequencies, damping coefficients, and attitude estimation.

Accurately estimating the states of a system whose dynamics are time-invariant

and known is often easily accomplished. There are numerous estimation methods

for accomplishing this task, depending on the particular application. New problems

are created, however, when the system has unknown or time-varying dynamics. If

estimation is attempted for system dynamics that are incorrectly modelled, large

errors in the estimated states are likely. Even more problems may arise if control

is to be applied based upon the estimated states. It is clear that a state feedback

regulator applying control to a system based upon these incorrect states may have

problems determining the correct amount of control to apply, possibly causing the

system to go unstable.
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This paper discussesan adaptive filter techniquethat utilizes a Kalman filter.
Adaptive filters basedupon Kalman filters are known as adaptive Kalman filter_

(AKF). This AKF design is developed in the second and third sections, then applied

to a satellite attitude determination problem in Section 4.

2 A RML Identification Technique

2.1 Motivation for Development

Using a Kalman filter-based adaptive filter offers several advantages over other adap-

tive filter techniques. Even though it may be computationally intense depending

upon the application, the adaptive Kalman filter design provides the capability to

easily provide the system states where and when they may be needed. A large space

structure system could be designed so that the states are the structure's attitude

(pitch, roll, yaw and their rates). For this example, the AKF could serve as not only

the state estimator, but the provider of these estimated states to other payloads as

well.

To be adaptive, however, the AKF must be able to accurately identify unknown

or time-varying system parameters. The burden of this task falls upon the identifier.

Since it may be desireable to use a Kalman filter-based adaptive filter, it seems

reasonable that the identifier algorithm chosen should be one that works well with

a Kalman filter. This chapter will cover the development of such an identifier.

Maximum likelihood techniques have been used for parameter identification

for many years. Lee [18], in his book published in 1964, claims that Fisher [8]

first developed identification using maximum likelihood techniques. The concept

of recursive maximum likelihood identification using a Newton-Raphson type opti-

mization technique and Kalman filter equations was originally conceived by Stepner

and Mehre [25] in 1973. Their algorithm, which was designed to handle nonlinear

as well as linear dynamics, was very computationally intensive. In 1986, Fermelia

[7] further expanded the concepts, and Sjodin and Fermelia [24] developed working

code for a first order dynamics model in 1987. Sjodin and Fermelia's algorithm was

much simpler in concept, thus giving it a much better chance for real-time imple-

mentation. Kelly [14] and Fermelia extended this work to multiple second order

dynamic models in 1989.

2.2 System Model

This dissertation discusses an adaptive Kalman filter design where the system model

is defined in state-space form. Consider a system described by

z_" = Fx_ + au + w__ (1)

z_ = Hx + v_. (2)
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The noisevectors, w_ and v, are assumed to be normally distributed with a mean

of zero.

In order to obtain a discrete-time model of the above system model, it is as-

sumed that the set of discrete-time points {0, I, ..., k, k + I} are sufficiently

close together that piecewise constant approximations may be made. The solution

of i = Fz + Gu__ for such an interval may be expressed as [2]

k+lx_k+l = _k+1,kz_ k + rbk+_,,G,dru_k.
Jk

(3)

2.3 Defining the Performance Index

In this section, a performance index is defined for RML identification. Since the

identification technique is a recursive maximum likelihood method, the log likeli-

hood function must first be defined. To identify the system parameters, the log

likelihood function must be maximized. This function is maximized by minimizing

its negative term. This negative term is chosen as the performance index.

2.3.1 The Log Likelihood Function

The identification method that is developed in this section is a recursive maximum

likelihood method. Variables that are vectors rather than scalars are underlined.

Variables that are estimated or identified have a hat, such as _. First, define a log

likelihood function, £(0_), as

£(0) = ln[p(ZJO_)] (4)

where 0 is a vector of unknown parameters and p(Z]0_) is the conditional probability

density function of the observations, Z_, given 0_. The maximum likelihood estimate,

0_, is the parameter vector that most likely caused the observations [24].

Repeated use of Bayes' Law is used to derive an expression for /; (0_0_).Let Zk+l

be the set of all observations at time k + 1, or

= [z_,z2 .-. ]. (5)

Now, p(Z_+,10 ) may be expressed as

p(G+ll0) = p(z_, ... z_k+,[0_). (6)

£;(0_) may now be written as

k+l

£(_0) = In I-[ P(z--iIZi-I,-0)"
i=1

(7)
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If the noise values, _ and V_k+1 , are normally distributed, p(zi[Zi_l,0_) is

normally distributed. From [24],

(s)

where

def
m = dim[v_]

B de_=_fE(Ev_T)

def
_u_ = z_ - _.

Substituting this into the Equation 8 gives

z(0.)
k+l 1 2 1

ln(l'I [(27r) TM det B l- / exp(--_ __T B -1 V__i))
i=1

1 m(k + 1) in (27r)
2

k+l I

- _ _ (ln (det B) + u_riB -_ u__i).
i=1

(9)

2.3.2 The Performance Index

Now that the log likelihood function has been defined, an expression for the perfor-

mance index must be found. In Equation 9, 12(0) is maximized if the summation

expression is minimized. Consider the following performance index,

k+] 1

Jk+,(0.) = E { (ln (det B) + _vT B -1 --Pi)
i=1

(10)

to be minimized.

If Jk+l(0.) is expanded using a Taylor Series expansion, one obtains

Jk+,(O) -- Jk+l(0.*) -_ 0Jk_-_(0.)l_0=_0"_;0

102£+1(0)
+ 2 _ I°=°'_°_+ "" (11)

where 0.* is the current value of the parameter, 0..

If third and higher order partial terms are assumed to be negligible, the above

expression can be solved for 60_, the parameter error. At steady state, it is desired

that Jk+l(0) - Jk+l(0*) = 0. What remains of the Taylor Series expansion is

j_(0) 10_0.60 102J_+1(0)1_0=o.602 (12)0 - 0 ---- + 2 00_2
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Solving for the parameter update, the following expression is obtained:

60 = - 2
-1

"02Jk+l(O_)lo=o_." OJk+l(O_)
00_2 00- Io=o'. (13)

The parameter update, 0n_ w is found by adding the error in the parameter, __0, to

the current value of the parameter, 0_ord.

o__now= + e0_ (14)

Equation 13 is very similar in form to the recursive Newton-Raphson algorithm.

The first and second partials are found by differentiating Jk+_(O__) from Equa-

tion 10. The error covariance matrix, B, is assumed to be constant once steady

state has been reached. Thereby, the first term of Equation 10 may be ignored

when the partial is taken, giving [1] [24] [25]

OJk+l(_)

002

i=1 --_'-"/_---i

_ O'T B l OPi:

(15)

(16)

The error covariance matrix B is defined as [20] [25]

B
1 k+l

-- k +1 E uiE/r" (17)
i----1

The error covariance matrix B contains a vector, __u,multiplied by its transpose,

_u. Because of this, B will tend to be singular for the first and second iterations.

This singularity will cause difficulties in solving for B -1. Depending upon the

dynamics of the system, the identifier generally works well if B -1 is reinitialized

on or about the third iteration. Hence, one solves for B on the first two iterations,

but not for B-_ , 0J0__gor -0-yz.°2JThen on the third iteration, begin solving for all

identifier values.

2.4 RML Identification Algorithm

The next two sections of this chapter discuss the matrix (multiple identified pa-

rameters) form of RML identification. The first section covers the details of the

derivation of the matrix form of RML identification. This is followed by a section

describing the procedure for matrix RML identification.
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2.5 RML Identification Algorithm

The recursive identification parameter update algorithm is described by Equa-

tions 13 through 17. Equation 13 is comprised of Equations 15 and 16. The 0,_
00

term of these last two equations is now described. Since the following derivations

rely heavily upon the Kalman filter equations, Table 1 [9] is presented as an quick
reference of the set of Kalman filter equations.

Table 1: Summary of Kalman Filter Equations

Process .Model

:,leasurement Model

State Estimate Extrapolation

Error Co:'axiance Extrapolation

Error Covariance Update

Kalman Gain

State Estimale Update

Kalman Filter EquaTions

_,,l=H**lx-_.l+v,.i E_-I _.X'IO.R,)

T

[/-L+:]s,.,/,n,+_+ .e..,]

_..,,., =L.,/,+_',+,[_.- H,.,_..,]

First, define a variation in -_k+l as the error between the desired innovations,

_k+l(D), and the incorrect innovations, _Uk+l(I ).

5vk+, ---- -Yk+l(D) -- ---Pk+l(/r) • (18)

The desired innovations can be viewed as the innovations expected for a Kalman

filter whose dynamics match those of the system being modeled. The incorrect

innovations can be viewed as the innovations expected from a Kalman filter whose

model dynamics do not match those of the system being modeled.

In order to obtain an expression for 5_uk+l , begin with the Kalman filter
expression for the innovations.

//k+l ---- Zk+l -- _k+l/k.

Then, observing the variation of both sides,

(19)

_---Mk+l : (_(Z--k+l -- Z--kT1/k)" (20)
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Since there is no error in z_k+1 due to errors in the system dynamics or modeling,

'52+1 = O. Thus,

's;]k+l = -- '5(_k+l/k) (21)

Assume that the unknown or changing parameters exist only in 4k+l,k, the

Kalman filter state transition matrix. Using the Kalman filter equation for _k+l/k

from Table 1, expand to get

'5V__k+l : --'5 [gk+l_k+l,k_k/k]. (22)

The parameters to be identified occur only in _k+l,k, the state transition matrix.

Therefore,

'5_k+l : -- Hk+l'5_k+l,kXk/k -Jr-Hk+l_k+l,k'52_k/k]

0_k+l k^ 0ik/k]
gk+l -'_-f_T' X__k/k + Hk+l_k+l,k C_O0_T j

The term 0_ may be expressed as

(9¢11

0¢21
04=

0¢nl

0¢12 ... 0¢1n
0¢22 "" 0¢2n

0¢_2 "" 0¢nn

where

'5o. (23)

(24)

O¢_j'501 + 0¢_j ,502 O¢_j'50,_
O¢_j = 00, _ +"" +

O¢_j
= -__r'50_. (25)

Let the terms contained by the brackets in Equation 23 be represented by a

matrix Ak+l.

Ak+l = Hk+l 0(Fk+l,k 0_k/k (26)
o0_T _k/k + Hk+l_+l,k _T "

Then,
T

(?/2k+ 1
-- Ak+l.

The first term of Ak+l may be realized by the following algorithm [5]:

^T 0¢i
x--k/_ 57
^ T 0_b_

xk/k 00--r

^T 0¢_

z--k/k00-gr

= Hk+l Mk+l '50_

'5o
^

Hk+l'sg2k+l,k_k/k = Hk+l

(27)

(28)
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or

^

where ¢ij are elements of ffk+l,k and

= Hk+lMk+l (29)

¢1 = [¢11 ¢12

Cn = [¢nl ¢n2 •.. Cnn]r.

An expression must now be found for the second term of Ak+l. If an expression

can be found for °_k+lL_+l then 0_/k00_ _ is simply the value of O_k*x/k+l from the last, o0_T
iteration. Let a matrix Bk+l be defined as

Bk+l -- Oik-t-1/k+l

oo_r (30)

Then, Bk+l from the last iteration is defined as

Bk - Oi_/k
O0 r . (31)

Again, using the Kalman filter equation for ik+l/k-F1 from Table 1, the following

expression is derived

Bk+15_ ---- 5ikT1/k+l

= _ [_k+l,kX._.k/k -f- Gk+ll/k+l]

"O_k+l,k O_kik

OGk+x Ou__k+l]

+ O0-""""'_-_k+l "_ Gk+l (907, j 5_0. (32)

Thus, Bk+l may be written in terms of Mk-F1 , Bk and Ak+l as

Bk+l = Mk+l -t- _)k+l,kBk

OGk+l

nt- o0_T _-k+l -- Gk+lAk+l.
(33)

Let a matrix Ck+l be defined such that

OGk+_

Ck+ 1 = 0---_---___k + 1
(34)
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or

Ck+160 = 6Gk+lu_v__+l. (35)

An expression for _ is found next. Again, expand using the Kalman filter
001

equation for Gk+l from Table 1.

6Gk+l =

Expand o&+llk+l the same way.

"OPk+l/k+l I.j-T R_I 50.

zz k-b1 k+l --

6Pk+l/k+l = [I -- Gk+lHk+,] 6Pk+l/k -- 6Gk+l Hk+lPk+l/k.

Fk+l = I - Gk+lHk+l

Letting

Equation 37 becomes

OPk+l/k_Pk+l/k+l =- rk+l _T

Thus

(36)

(37)

(3s)

OGk+l ]Hk+lPk+Uk 50. (39)

(40)

Now_

OPk+l/k+l = Fk+l OPk+l/k
00- T C_OT

OPk+_,tk+_may be described as
001 '

OPk+llk+l OPk+llk

C_O_T O0 T

OPk+l/k
- Gk+lHk+l o0_T

and substituting 6P_+i/k+l into Equation 36 yields

= Irk+, cgPk+_/k
6ak+l [ 00_

H kT+I R k-__I

Introduce the matrix Vk+l where

OGk+l
Hk+lPk+l/k.

OGk+l

Hk+lPk+l/k

(41)

-1

50_. (42)

Wk+l =Hk+lRk+ 1 T -1 _k+l"

Then, post multiplying Equation 42 by u_v_k+l, an expression for Ck+l

as

OGk+l
Ck+l = ooT gk+l

OPk+l/k
: rk+l _T Vk+l

(43)

is obtained

(44)
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Letting

OPk+l/k

Dk+l- _ Vk+l

allows Ck+l to be expressed in terms of a matrix Dk+l •

(45)

Ck+l = Fk+lDk+l

Next, an expression for Dk+l is found as

(46)

Dk+15_ 5G+I/aG+I

54k+l,kWk+l '_ 4k+l,k 5Pk/k Uk+l

+ 4k+l,kG/k ^T5Ok+l,kVk+l (47)

where

Wk+l ^ T= Pk/kOk+l,kVk+l (48)

Vk+l ^ T_--- (I)k+ 1,k Vk+l • (49)

Using the same technique as in Equation 28, the first term of the Dk+l expres-
sion may be written as

_G+,,kWk+_

The third term can be written as

W[+I 0¢1

wT+I Og2o--gr

I/vT+I ocno-7

= Sk+15 _.

5O

(50)

4k+l,kPk/k ^ T

00'

y[+, 001

v[+, 001

^

= Ok+l,kPk/kNk+_50_

_o_0_

(51)

where

... ¢_ ]r.
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Let the second term of the Dk+l expression be written in terms of a matrix Ek+l,

_k+l,kSP_/kUk+, = _k+,,_Ek+_50. (52)

Combining all three terms for Dk+l gives

Dk+l = _k+l,kEk+l + Sk+l + _k+l,kPk/kNk+l. (53)

An expression for Ek+l must now be found. Equation 52 defines Ek+l as

Ek+,50_ = 5Pk/kUk+l. (54)

Using the Kalman filter equation for Pk/k yields

_ _ Pk/kH k Rk5Pk/kHk Rk HkPk/k-_ HkSPk/k-,. (55)5Pk/k = 5Pk/k-1 T -1 T -1

Solving for 5Pk/k and postmultiplying by Uk+l yields

6Pk/kUk+l = rk6Pk/k-lYk+l (56)

or

where

Ek+lSO__ = FkSPk/k-lYk+l (57)

Yk+_ = TkUk+_ (58)
T -1

Tk = I+ H k R k Pk/k-1. (59)

Let a matrix Fk+l be defined as

fk+l__0 = 5Pk/k-lYk+l (60)

such that Ek+l is expressed in terms of Fk+l.

Ek+l = FkFk+l (61)

The matrix Fk+l is expressed in terms of Dk, the previous value of the Dk+l matrix.

Since 5Pk/k-1 is symmetric,

= ¢SPk,/k_lYk,+l

• T
= Vi Vi, 6P_/__IY_+:

= V_"(D_:) r Y_+: (62)

(63)

(64)

where V_* is defined as the pseudo-inverse of V_T [26], or

T -1

This allows F_+I to be expressed as

Fk+l [ * T * T * T .= 17£Yk+ld_ ]V£ Yk+ld217£Yi+,d_ ...

where dj is defined as the jth column of D_.
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3 Matrix RML Identification Procedure

The identification algorithm has now been derived for the matrix (multiple

parameter) case where only the state transition matrix, _)k+l,k, is a function of the

parameters. The procedure for using the matrix form of RML identification is now

explained. There are six major steps, with steps five and six having several substeps.

1. Set Bk equal to Bk+l of the last identifier iteration. If this is the first

iteration, set it equal to some small reasonable number. The user may have

to try several different starting values in addition to letting the identifier

iterate several times in order to determine a reasonable initial value.

2. Calculate _ using Equation 27.

3. Calculate the error covariance, B, using Equation 17.

4. Calculate the first and second partials of Jk+l using Equations 15 and 16.

5. If ready to update,

• Calculate the parameter error vector, (50, using Equation 13.

• Update the parameter vector, 0, using Equation 14.

6. If not ready to update, solve for Bk+l to be used as Bk in the next iteration.

To do this,

• Set Dk, Tk, Vk and rk equal to Dk+l, Tk+l, Vk+l and I_k+l, respectively,

from the previous iteration. From the last iteration of the Kalman filter,

get the values for Pk/k, 2__k/k, Pk+l/k, Gk+l, Hk+l and Rk+l.

• Calculate:

(a) Vk* from Equation 63

(b) Vk+ 1 from Equation 43

(c) Uk+l from Equation 49

(d) Yk+l from Equation 58

(e) Fk+l from Equation 64

(f) Ek+l from Equation 61

(g) Nk+l from Equation 51

(h) Wk+l from Equation 48

(i) Sk+l from Equation 50

(j) Dk+l from Equation 53

(k) Fk+! from Equation 38

(1) Ck+l from Equation 46

(m) Bk+l from Equation 33
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• t4 Attitude Determma ion Example

This section discusses an application of AKF-RML to a spacecraft attitude

scenario. First, the dynamic equations are developed. Next, the state space model

for the dynamic equations is explained. Finally, results are shown using simulated

data.

4.1 Dynamic Equations

Assume the attitude of a spacecraft may be described using Euler's equations [12],

5wx _ Nl + ( I2 - I3 ) w2w3 (65)Ia _t
5w2

h 5t - N2+(I3-I_)w3w, (66)

5w3
13 5t -- N3 + (11 - 12)wlw2 (67)

where Ii represents the inertia about the ith axis, wi is the angular velocity about

the ith axis and 37/is the applied torque about the ith axis.

If torque-free motion (PC/= 0), symmetry of two of the inertias (/1 =/'2 = IT)

and constant velocity in the third axis (w3 = n) is assumed, then the above equations

IT 5t - (I3- zT)_3 (68)
5w2

IT 6t -- (I3- IT)w3w, (69)

5w3
Ir _t - o. (70)

become

Differentiating Equation 68 yields

ITW'I = - (13 - IT) a)2w3.

Multiplying by IT and substituting in Equation 69 gives

z_,z, = -(_r3 - -rr)_Jr_
= -(h- ±_)_3(h- _'_)_3_1
= -(h- ±_)_,_,

(71)

(72)

(73)
(74)

or

_'1= _ Ii/3 Ir,_2
IT ] _1.\

Integrating Equation 70 then yields an expression for w2 as

_2 = ( I3 - Ir-it ) _3_lt

(75)

(76)

where t is the step size.
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or in discrete state spaceform as

4.2 State Space Model

Equation 75 is in the form of a simple undamped harmonic oscillator. Therefore, it

may be expressed in continuous state space form as

[0.0:][xi]

where

x2 k+l -w_ sinw_t cosco_t x2

=
_n \ Yr )_3.

(7s)

(79)

4.3 Attitude Determination Results

The example described in Sections 4.1 and 4.2 were implemented on a XT-compatable

PC. The true natural frequency, w_, was set to -6.0 radians. The natural frequency

in the Kalman filter dynamics was assumed to be unknown, and the identifier set

up to solve for the true value.

In the first test case, AKF-RML was set up to operate in a pseudo-batch mode.

In this mode, the identifier is actually solving for the unknown parameter at each

iteration, but the parameter is updated every k iterations. Figure l(a) shows the

results of this test case with k set to 70 iterations and the initial guess on w,_ equal

to -6.3 radians.

While this pseudo-batch mode is useful for analysis and to gain insight into

the operation of the AKF-RML algorithm, the goal is still to operate recursively.

Figure l(b) shows the results of recursive AKF-RML with the initial guess of w,_ at
-6.6 radians.

5 Summary

Adaptive filtering is rapidly gaining popularity as a method of estimating sys-

tems with unknown or changing dynamics. This paper offers a recursive identifica-

tion algorithm that is designed to be used in conjunction with a Kalman filter.

In [14], the recursive maximum likelihood identification algorithm is developed

and tested. Extensive testing is accomplished using simulated data, beginning with

the simple first order, decaying exponential case. This is extended to second order

spring-mass dynamics, with excellent results obtained for both of these cases. Next,

damping is added to create the well-known spring-mass-damper dynamic case. Very
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good results are obtained when identifying the natural frequency or damping coef-

ficient individually. Problems arise, however, when both parameters are identified

concurrently. This problem presents itself whenever the parameters to be identified

are not of the same magnitude, and is solved by the addition of a scaling matrix to

the parameter update equation.

The identification algorithm developed in this paper may be computationally

intense in some applications. As with all Kalman filter algorithms, the computa-

tional needs rise quickly as the number of states and observations increase. The

identification algorithm computational needs will rise not only with an increase in

the states and observations, but with an increase in the number of identified pa-

rameters as well. Another possible disadvantage is the trial and error method that

is currently used to find the parameter scale factors. The use of scale factors is

actually not a disadvantage against this identification algorithm alone, as similar

scaling or weighting matrices are used in many current identification algorithms

when identifying parameters of different magnitudes. In addition, maximum likeli-

hood techniques tend to converge poorly when the initial conditions are far away

from the true conditions. In most practical applications the users should be able to
arrive at reasonable initial conditions.

The advantages of using this adaptive filter design are many. Incorporation

of a Kalman filter estimator in AKF-RML allows the designer to choose system

states that relate to real-world entities such as position, velocity and acceleration.

In the case of aircraft or satellite applications, for example, those states can then

be passed on to various payloads for pointing requirements. RML identification is

designed specifically to be used in conjunction with the Kalman filter. Therefore,

this adaptive Kalman filter design may be implemented for systems whose dynamics

are unknown or varying.

In addition, the RML identification algorithm described in this paper is able to

handle relatively high levels of noise. The common problem of insufficient excitation

prevents parameters from being identified at very low noise levels, but this problem

disappears as noise levels are brought up enough to provide sufficient excitation.

Results are shown for a simple spacecraft attitude determination example.

Plots are presented for two cases. The first case shows the results of AKF-RML

in batch mode where the parameter is updated after a series of iterations. Next,

results are provided of AKF-RML in recursive mode. More research needs to done,

especially in the area of choosing initial conditions, in order to get AKF-RML to

operate efficiently in recursive mode.
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